Building Data Analytics Solutions Using Amazon Redshift
    About Lesson

    Module A: Overview of Data Analytics and the Data Pipeline

    • Data analytics use cases
    • Using the data pipeline for analytics

    Module 1: Using Amazon Redshift in the Data Analytics Pipeline

    • Why Amazon Redshift for data warehousing?
    • Overview of Amazon Redshift

    Module 2: Introduction to Amazon Redshift

    • Amazon Redshift architecture

    Interactive Demo 1: Touring the Amazon Redshift console

    • Amazon Redshift features

    Practice Lab 1: Setting up your data warehouse using Amazon Redshift

    Module 3: Ingestion and Storage

    • Ingestion
    • Interactive

    Demo 2: Connecting your Amazon Redshift cluster using a Jupyter notebook with Data API

    • Data distribution and storage

    Interactive Demo 3: Analyzing semi-structured data using the SUPER data type

    • Querying data in Amazon Redshift

    Practice Lab 2: Data analytics using Amazon Redshift Spectrum

    Module 4: Processing and Optimizing Data

    • Data transformation
    • Advanced querying

    Practice Lab 3: Data transformation and querying in Amazon Redshift

    • Resource management

    Interactive Demo 4: Applying mixed workload management on Amazon Redshift

    • Automation and optimization

    Module 5: Security and Monitoring of Amazon Redshift Clusters

    • Securing the Amazon Redshift cluster
    • Monitoring and troubleshooting Amazon Redshift clusters

    Module 6: Designing Data Warehouse Analytics Solutions

    • Data warehouse use case review

    Activity: Designing a data warehouse analytics workflow