Course Content
Train and deploy a machine learning model with Azure Machine Learning (DP-3007)
    About Lesson

    Module 1: Make Data Available in Azure Machine Learning 

    • Introduction 
    • Understand URIs 
    • Create a datastore 
    • Create a data asset 

    Exercise: Make data available in Azure Machine Learning 

    Module 2: Work with Compute Targets in Azure Machine Learning 

    • Introduction 
    • Choose the appropriate compute target 
    • Create and use a compute instance 
    • Create and use a compute cluster 

    Exercise: Work with compute resources 

    Module 3: Work with Environments in Azure Machine Learning 

    • Introduction 
    • Understand environments 
    • Explore and use curated environments 
    • Create and use custom environments 

    Exercise: Work with environments 

    Module 4: Run a Training Script as a Command Job in Azure Machine Learning 

    • Introduction 
    • Convert a notebook to a script 
    • Run a script as a command job 
    • Use parameters in a command job 

    Exercise: Run a training script as a command job 

    Module 5: Track Model Training with MLflow in Jobs 

    • Introduction 
    • Track metrics with MLflow 
    • View metrics and evaluate models 

    Exercise: Use MLflow to track training jobs 

    Module 6: Register an MLflow Model in Azure Machine Learning 

    • Introduction 
    • Log models with MLflow 
    • Understand the MLflow model format 
    • Register an MLflow model 

    Exercise: Log and register models with MLflow 

    Module 7: Deploy a Model to a Managed Online Endpoint 

    • Introduction 
    • Explore managed online endpoints 
    • Deploy your MLflow model to a managed online endpoint 
    • Deploy a model to a managed online endpoint 
    • Test managed online endpoints 

    Exercise: Deploy an MLflow model to an online endpoint