

Course duration 140 Hr

 ITShare Company

01122339966 - 01122339955

Mostafa@iteshare.com

Java Full Stack Content

Java SE 7 Programming

Course Objectives

▪ Create Java technology applications with the latest JDK 7 Technology and the
NetBeans Integrated Development Environment (IDE).

▪ Enhance object-oriented thinking skills using design patterns and best practices.

▪ Identify good practices in the use of the language to create robust Java
applications.

▪ Manipulate files, directories and file systems.

▪ Write database applications using standard SQL queries through JDBC.

▪ Create high-performance, multi-threaded applications.

▪ Create classes that subclass other classes, extend abstract classes and program
with interfaces.

▪ Properly use exceptions and the Collections framework.

▪ Develop applications that manipulate files, directories and file systems. Course

Outline

Java Platform Overview

▪ Introductions

▪ Course Schedule

▪ Java Overview

▪ Java Platforms

▪ OpenJDK

▪ Licensing

▪ Java in Server Environments

▪ The Java Community Process Java Syntax and Class Review

▪ Simple Java classes

▪ Java fields, constructors and methods

▪ Model objects using Java classes

▪ Package and import statements

Encapsulation and Polymorphism

▪ Encapsulation in Java class design

▪ Model business problems with Java classes

▪ Immutability

▪ Subclassing

▪ Overloading methods

▪ Variable argument methods Java Class Design

▪ Access modifiers: private, protected and public

▪ Method overriding

▪ Constructor overloading

▪ The instanceof operator

▪ Virtual method invocation

▪ Polymorphism

▪ Casting object references

▪ Overriding Object methods

Advanced Class Design

▪ Abstract classes and type generalization

▪ The static and final modifiers

▪ Field modifier best practices

▪ The Singleton design pattern

▪ Designing abstract classes

▪ Nested classes

▪ Enumerated types

Inheritance with Java Interfaces

▪ Java Interfaces

▪ Types of Inheritance

▪ Object composition and method delegation

▪ Implementing multiple interfaces

▪ The DAO design pattern Generics and Collections

▪ Generic classes and type parameters

▪ Type inference (diamond)

▪ Collections and generics

▪ List, set and Map

▪ Stack and Deque

String processing

▪ String manipulation with StringBuilder and StringBuffer

▪ Essential String methods

▪ Text parsing in Java

▪ Input processing with Scanner

▪ Text output and formatting

▪ Regular expressions with the Pattern and Matcher classes

Exceptions and Assertions

▪ Exceptions categories

▪ Standard Java Exception classes

▪ Creating your own Exception classes

▪ Using try-catch and the finally clause

▪ Using try-with-resources and the AutoCloseable interface

▪ The multi-catch feature

▪ Best practices using exceptions

▪ Assertions

I/O Fundamentals

▪ I/O using Java

▪ Reading the console input stream

▪ Writing to the console

▪ Using I/O Streams

▪ Chaining I/O Streams

▪ Channel I/O

▪ Reading and writing objects using Serialization

File I/O with NIO 2

▪ The Path interface

▪ The Files class

▪ Directory and File operations

▪ Managing file system attributes

▪ Reading, writing, and creating files

▪ Watching for file system changes

Threading

▪ Operating system task scheduling

▪ Recognizing multithreaded environments

▪ Creating multi-threaded solutions

▪ Sharing data across threads

▪ Synchronization and Deadlock

▪ Immutable objects

Concurrency

▪ Creating Atomic variables

▪ Using Read-Write Locks

▪ Thread-safe collections

▪ Concurrenct synchronizers (Semaphore, Phaser, and others)

▪ Executors and ThreadPools to concurrently schedule tasks

▪ Parallelism and the Fork-Join framework

Database Application with JDBC

▪ Layout of the JDBC API

▪ JDBC divers

▪ Queries and results

▪ PreparedStatement and CallableStatement

▪ Transactions

▪ RowSet 1.1 RowSetProvider and RowSetFactory

▪ The DAO Pattern and JDBC Localization

▪ Advantages of localization

▪ Defining locale

▪ Read and set locale using the Locale object

▪ Resource bundles

▪ Format messages, dates and numbers

Java EE 6: Develop Web Components with Servlets JSPs

Course Objectives

▪ Write servlets using the Java programming language (Java servlets)

▪ Understand and manage HTTP sessions in a web application

▪ Create servlet filters and listeners

▪ Write pages created with JavaServer Pages technology (JSP pages)

▪ Create easy-to-maintain JSP pages using the Expression Language and the JSP Standard
Tag Library (JSTL)

▪ Use integrated development environments (IDEs) and application servers for Java EE
development and deployment Course Outline

Introducing the Course

▪ Reviewing the Java SE and Java EE Curriculum

▪ Getting Acquainted with Other Students

▪ Reviewing Course Objectives

▪ Discussing 5 Day Course Schedule

▪ Describing the Format that the Class will Use

▪ Introducing Web Application Technologies

▪ Describing the Java EE 6 Web Profile

Web Application Essentials

▪ Describing Java Servlet Technology

▪ Describing JavaServer Pages Technology

▪ Understanting the Model-View-Controller (MVC) Architecture

▪ Explaining Java EE Containers and Java Application Servers

▪ Describing the Web Application Development Process

▪ Identifying the Essential Structure of a WAR File

Developing a Servlet

▪ Describing the HTTP Headers and Their Function

▪ Explaining the Request and Response Processes

▪ Understanding the Life Cycle of a Servlet

▪ Listing Injection and Lifecycle Method Annotations

▪ Understanding the Threading Model of a Servlet

▪ Developing a Servlet to Respond to Requests from the Client Browser

Handling Form Requests in Servlets

▪ Using HTML Forms To Collect Data From Users and Send it To a Servlet

▪ Understanding How Form Data Is Sent in an HTTP Request

▪ Developing a Servlet that Retrieves Form Parameters

▪ Understanding and Using HttpSession Objects

▪ Using Cookies for Session Management

▪ Using URL Rewriting for Session Management

Configuring Your Web Application

▪ Describing the Purpose of Deployment Descriptors

▪ Creating Servlet Mappings to Allow Invocation of a Servlet

▪ Creating and Access Context and Init Parameters

▪ Using the @WebServlet and @WebInitParam Annotations

▪ Using the ServletContextListener Interface

▪ Describing the Different Scopes in a Web Application

▪ Handling Errors Using a Deployment Descriptor

Implementing an MVC Design

▪ Implementing the Controller Design Element Using a Servlet

▪ Implementing the Model Design Element Using a POJO

▪ Implementing the View Design Element Using a JSP and Expression Language (EL)

▪ Connecting the model, View, and Controller Elements to Implement a Working MVC

Solution

▪ Injecting a Service in a Controller

Developing Components with JavaServer Pages Technology

▪ Describing JSP Page Technology

▪ Writing JSP Code Using Scripting Elements

▪ Writing JSP Code Using the Page Directive

▪ Writing JSP Code Using Standard Tags

▪ Writing JSP code using Expression Language

▪ Configuring the JSP Page Environment in the web.xml File

▪ Writing an Error Page by Using JSP

Developing JSP Pages by Using Custom Tags

▪ Designing JSP Pages with Custom Tag Libraries

▪ Using a Custom Tag Library in JSP Pages

▪ Describing JSTL Tags

Using Filters in Web Applications

▪ Describing the Web Container Request Cycle

▪ Describing the Filter API

▪ Developing a Filter Class

▪ Configuring a Filter in the web.xml File

More Servlet Features

▪ Using the Asynchronous Servlet Mechanism

▪ Using JavaScript to Send an HTTP Request from a Client

▪ Processing an HTTP Response Entirely in JavaScript

▪ Combining These Techniques to Create the Effect of Server-push

▪ Handling Multipart Form Data

Implementing Security

▪ Describing a Common Failure Mode in Security

▪ Requiring that a User Log in Before Accessing Specific Pages in Your Web Application

▪ Describing the Java EE Security Model

▪ Requiring SSL Encrypted Communication for Certain URLs or Servlets

Integrating Web Applications with Databases

▪ Understanding the Nature of the Model as a Macro-pattern

▪ Implementing Persistent Storage for Your Web Applications Using JDBC or Java
Persistence API

Spring MVC Content

Getting started with Spring

What is Spring?

▪ Overview of the Spring Framework

▪ Spring Modules and architecture

▪ A Simple Example

▪ Wiring Beans

▪ Configuring a Properties File

▪ Beans and Containers

▪ Spring Containers

▪ Spring Configuration File

▪ Spring Beans

▪ Using the Container

▪ The BeanFactory Interface

▪ The ApplicationContext Interface

▪ Singleton vs. Prototype

▪ Bean Naming

▪ Dependency Injection

▪ Setter Injection

▪ Constructor Injection

▪ Autowiring

▪ Autowiring through configuration

▪ Autowiring by type and by name

▪ Aspect-Oriented Programming

Building Spring web applications

Following the life of a request
▪ Setting up Spring MVC

▪ Writing a simple controller

▪ Testing the controller

▪ Defining class-level request handling

▪ Passing model data to the view

▪ Accepting request input

▪ Taking query parameters

▪ Taking input via path parameters

▪ Processing forms

▪ Writing a form-handling controller

▪ Validating forms

 Rendering web views

Understanding view resolution

▪ Creating JSP views

▪ Defining a layout with ApacheTiles views

Advanced Spring MVC
▪ Alternate Spring MVC configuration

▪ Customizing DispatcherServlet configuration

▪ Adding additional servlets and filters

▪ Declaring DispatcherServlet in web.xml

Processing multipart form data
▪ Configuring a multipart resolver

▪ Handling multipart requests

Handling exceptions
▪ Mapping exceptions to HTTP status codes

▪ Writing exception-handling methods

Securing web applications

Getting started with Spring Security
▪ Intercepting requests

▪ Authenticating users

Spring in the back end

▪ Hitting the database with Spring and JDBC

Configuring a data source
▪ Using JNDI data sources

▪ Using a pooled data source

Using JDBC with Spring

▪ Working with JDBC templates

Java Persistence with Hibernate

Overview

Hibernate is an object-relational mapping (ORM) library for the Java language, providing a

framework for mapping an object-oriented domain model to a traditional relational database.

Hibernate solves Object-Relational impedance mismatch problems by replacing direct

persistence-related database accesses with high-level object handling functions. Benefits

• Understand ORM and basics of Hibernate.

• Understand and implement life cycle of Hibernate Persistence and Session Factory.

• Implement Hibernate Mappings, Inheritance and Types.

• Understand Hibernate Criteria and Query Language.

• Exploring Hibernate Transactions,

• Filter and Performance. Implement Hibernate Search and Validations.

• Hibernate with NoSQL and Spring.

React JS

1. Welcome to React

• Obstacles and Roadblocks

• React’s Future

• Working with Files
i. React Developer Tools

ii. Installation Node JS

2. Emerging JavaScript

• Declaring Variable in ES6

• Arrow function

• Transpiling ES6

• ES6 Objects and Arrays
• Promises

• Classes

3. Pure React

• Page Setup

• The Virtual DOM

• React Elements

• React DOM

• Children

• Constructing Elements with Data

• React Components

• DOM rendering

4. React with JSX

• React Elements as JSX

• Babel
• Intro to Webpack

5. Props, State and the Component Tree

• Property Validation

• Refs

• React State Management

• State within component Tree

6. Enhancing Components

• Component Lifecycle

• JavaScript Library Integration
• Higher-Order Components

• Flux

7. Redux

• State

• Actions

• Reducers
• The Store

• Action creators

• Middleware

8. React Redux

• Explicitly Passing the Store

• Passing Store via Context
• Presentation Versus Container Components

• The React Redux Provider

• React Redux Connect

9. React Router

• Incorporating the Router

• Nesting Routes

• Route Parameters

10. React on the Server

